Pages Menu
Categories Menu

Posted by on Mar 24, 2017 in Tell Me Why |

Who Discovered the Cure for Scurvy?

Who Discovered the Cure for Scurvy?

Scurvy was documented as a disease by Hippocrates, and Egyptians have recorded its symptoms as early as 1550 BCE. The knowledge that consuming foods containing vitamin C is a cure for scurvy has been repeatedly rediscovered and forgotten into the early 20th century.

Early modern era: In the 13th century, the Crusaders frequently suffered from scurvy. In the 1497 expedition of Vasco de Gama, the curative effects of citrus fruit were already known and confirmed by Pedro Álvares Cabral and his crew in 1507.

The Portuguese also planted fruit trees and vegetables in Saint Helena, a stopping point for homebound voyages from Asia, and left their sick, suffering from scurvy and other ailments to be taken home, if they recovered, by the next ship.

In 1500 one of the pilots of Cabral’s fleet bound for India noted that in Malindi, its king offered the expedition fresh supplies such as lambs, chickens, and ducks, along with lemons and oranges, due to which “some of our ill were cured of scurvy”.

Unfortunately, these travel accounts have not stopped further maritime tragedies caused by scurvy, first because of the lack of communication between travelers and those responsible for their health and also because fruits and vegetables could not be kept for long on ships.

In 1536, the French explorer Jacques Cartier, exploring the St. Lawrence River, used the local natives’ knowledge to save his men who were dying of scurvy. He boiled the needles of the arbor vitae tree (Eastern White Cedar) to make a tea that was later shown to contain 50 mg of vitamin C per 100 grams. Such treatments were not available aboard ship, where the disease was most common.

During the Age of Exploration between 1500 and 1800, it has been estimated that scurvy killed at least two million sailors. Jonathan Lamb wrote: “In 1499, Vasco da Gama lost 116 of his crew of 170; In 1520, Magellan lost 208 out of 230;…all mainly to scurvy.”

In 1593, Admiral Sir Richard Hawkins advocated drinking orange and lemon juice as a means of preventing scurvy. In 1614 John Woodall, Surgeon General of the East India Company, published “The Surgion’s Mate” as a handbook for apprentice surgeons aboard the company’s ships. He repeated the experience of mariners that the cure for scurvy was fresh food or, if not available, oranges, lemons, limes and tamarinds. He was, however, unable to explain the reason why and his assertion had no impact on the opinion of the influential physicians who ran the medical establishment that it was a digestive complaint.

18th century: A 1707 handwritten book by Mrs. Ebot Mitchell discovered in a house in Hasfield, Gloucestershire, contains a “Recipe for the Scurvy” that consisted of extracts from various plants mixed with a plentiful supply of orange juice, white wine or beer.

In 1734, the Leiden-based physician Johann Bachstrom published a book on scurvy in which he stated that “scurvy is solely owing to a total abstinence from fresh vegetable food, and greens; which is alone the primary cause of the disease” and urged the use of fresh fruit and vegetables as a cure.

However, it was not until 1747 that James Lind formally demonstrated that scurvy could be treated by supplementing the diet with citrus fruit, in the first ever clinical trial, through his experiences as a British naval surgeon and his studies while a physician at the Haslar Hospital for men of the Royal Navy at Gosport, Hampshire. Lind, who was born at Gosport, observed thousands of cases of scurvy and the conditions on board ship, particularly the sailors’ restricted diet, that cause it.

In 1753, Lind published A Treatise of the Scurvy, in which he explained the details of his clinical trial, but it occupied only a few paragraphs in a work that was long and complex and had little impact. In fact, Lind himself never actively promoted lemon juice as a single ‘cure’.

He shared medical opinion at the time that scurvy had multiple causes – notable hard work, bad water and the consumption of salt meat in a damp atmosphere which inhibited healthful perspiration and normal excretion – and therefore required multiple solutions. He was also side-tracked by the possibilities of producing a concentrated ‘rob’ of lemon juice by boiling it. Unfortunately this process destroyed the vitamin C and was unsuccessful.

During the 18th century, disease killed more British sailors than enemy action. It was mainly by scurvy that George Anson, in his celebrated voyage of 1740–1744, lost nearly two-thirds of his crew (1300 out of 2000) within the first ten months of the voyage. The Royal Navy enlisted 184,899 sailors during the Seven Years’ War; 133,708 of these were “missing” or died by disease, and scurvy was the leading cause.

About 150 years earlier, Dutch sailors had benefited from taking the juice of oranges, lemons and other citrus fruits. But it was not until Lind’s book was published that the relationship between scurvy, dietary deficiencies and treatment was scientifically established.

citrus fruit, lemon slices

The introduction of citrus fruit in sailors’ diet brought about the swift eradication of scurvy, which is a disease caused by a lack of vitamin C, resulting in weakness, spongy gums, bleeding and profound exhaustion. The practice of prescribing lime juice in British ships led Americans to coin the word “limey” to mean a British sailor. Later the word came to be applied to British people generally.

Although throughout this period sailors and naval surgeons were increasingly convinced that citrus fruits could cure scurvy, the classically trained physicians who ran the medical establishment dismissed this evidence as mere anecdote which did not conform to current theories of disease. Literature championing the cause of citrus juice therefore had no practical impact. Medical theory was based on the assumption that scurvy was a disease of internal putrefaction brought on by faulty digestion caused by the hardships of life at sea and the naval diet.

Although this basic idea was given different emphases by successive theorists, the remedies they advocated (and which the navy accepted) amounted to little more than the consumption of ‘fizzy drinks’ to activate the digestive system, the most extreme of which was the regular consumption of ‘elixir of vitriol’ – sulphuric acid taken with spirits and barley water and laced with spices.

In 1764, the book was read by William Monkhouse and William Perry, the surgeons on board the Endeavour, which was under the command of the famous British explorer Captain James Cook and was about to sail for New Zealand. They followed Lind’s principles and throughout the voyage, which lasted nearly three years, only one man died from scurvy.

In that same year a new variant appeared too. Advocated by Dr David McBride and Sir John Pringle, Surgeon General of the Army and later President of the Royal Society, this idea was that scurvy was the result of a lack of ‘fixed air’ in the tissues which could be prevented by drinking infusions of malt and wort whose fermentation within the body would stimulate digestion and restore the missing gases. These ideas receiving wide and influential backing, when James Cook set off to circumnavigate the world (1768–1771) in HM Bark Endeavour, malt and wort were top of the list of the remedies he was ordered to investigate. The others were beer, sour crout and Lind’s ‘rob’. The list did not include lemons.

Cook did not lose a single man to scurvy, and his report came down in favour of malt and wort, although it is now clear that the reason for the health of his crews on this and other voyages was Cook’s regime of shipboard cleanliness, enforced by strict discipline, as well as frequent replenishment of fresh food and green stuffs. Another rule implemented by Cook was his prohibition of the consumption of salt fat skimmed from the ship’s copper boiling pans, then a common practice in the Navy. In contact with air the copper formed compounds that prevented the absorption of vitamins by the intestines.

The first major long distance expedition that experienced virtually no scurvy was that of the Spanish naval officer Alessandro Malaspina, 1789–1794. Malaspina’s medical officer, Pedro González, was convinced that fresh oranges and lemons were essential for preventing scurvy. Only one outbreak occurred, during a 56-day trip across the open sea. Five sailors came down with symptoms, one seriously. After three days at Guam all five were healthy again. Spain’s large empire and many ports of call made it easier to acquire fresh fruit.

Although towards the end of the century MacBride’s theories were being challenged, the medical establishment in Britain remained wedded to the notion that scurvy was a disease of internal ‘putrefaction’ and the Sick and Hurt Board, run by administrators, felt obliged to follow its advice. Within the Royal Navy however opinion – strengthened by first-hand experience of the use of lemon juice at the siege of Gibraltar and during Admiral Rodney’s expedition to the Caribbean – had become increasingly convinced of its efficacy. This was reinforced by the writings of experts like Gilbert Blane and Thomas Trotter and by the reports of up-and-coming naval commanders.

With the coming of war in 1793, the need to eliminate scurvy acquired a new urgency. But the first initiative came not from the medical establishment but from the admirals. Ordered to lead an expedition against Mauritius, Rear Admiral Gardner was uninterested in the wort, malt and elixir of vitriol which were still being issued to ships of the Royal Navy, and demanded that he be supplied with lemons to counteract scurvy on the voyage.

Members of the Sick and Hurt Board, recently augmented by two practical naval surgeons, supported the request and the Admiralty ordered that it be done. There was however a last minute change of plan. The expedition against Mauritius was cancelled. On 2 May 1794, only HMS Suffolk and two sloops under Commodore Peter Rainier sailed for the east with an outward bound convoy, but the warships were fully supplied with lemon juice and the sugar with which it had to be mixed. Then in March 1795, came astonishing news. Suffolk had arrived in India after a four-month voyage without a trace of scurvy and with a crew that was healthier than when it set out.

The effect was immediate. Fleet commanders clamoured also to be supplied with lemon juice and by June the Admiralty acknowledged the groundswell of demand in the navy had agreed to a proposal from the Sick and Hurt Board that lemon juice and sugar should in future be issued as a daily ration to the crews of all warships.

It took a few years before the method of distribution to all ships in the fleet had been perfected and the supply of the huge quantities of lemon juice required to be secured, but by 1800, the system was in place and functioning. This led to a remarkable health improvement among the sailors and consequently played a critical role in gaining the advantage in naval battles against enemies who had yet to introduce the measures.

The surgeon-in-chief of Napoleon’s army at the Siege of Alexandria (1801), Baron Dominique-Jean Larrey, wrote in his memoirs that the consumption of horse meat helped the French to curb an epidemic of scurvy. The meat was cooked but was freshly obtained from young horses bought from Arabs and was nevertheless effective. This helped to start the 19th-century tradition of horse meat consumption in France.

Lauchlin Rose patented a method used to preserve citrus juice without alcohol in 1867, creating a concentrated drink known as Rose’s lime juice. The Merchant Shipping Act of 1867 required all ships of the Royal Navy and Merchant Navy to provide a daily lime ration to sailors to prevent scurvy. The product became nearly ubiquitous, hence the term “limey”, first for British sailors, then for English immigrants within the former British colonies (particularly America, New Zealand and South Africa), and finally, in old American slang, all British people.

The plant Cochlearia officinalis, also known as “Common Scurvy grass”, acquired its common name from the observation that it cured scurvy, and it was taken on board ships in dried bundles or distilled extracts. It’s very bitter taste was usually disguised with herbs and spices; however, this did not prevent scurvy grass drinks and sandwiches becoming a popular fad in the UK until the middle of the nineteenth century, when citrus fruits became more readily available.

West Indian limes began to supplement lemons when Spain’s alliance with France against Britain in the Napoleonic Wars made the supply of Mediterranean lemons problematic and because they were more easily obtained from Britain’s Caribbean colonies and were believed to be more effective because they were more acidic, and it was the acid, not the (then-unknown) Vitamin C that was believed to cure scurvy.

In fact, the West Indian limes were significantly lower in Vitamin C than the previous lemons and further were not served fresh but rather as lime juice, which had been exposed to light and air and piped through copper tubing, all of which significantly reduced the Vitamin C. Indeed, a 1918 animal experiment using representative samples of the Navy and Merchant Marine’s lime juice showed that it had virtually no antiscorbutic power at all.

The belief that scurvy was fundamentally a nutritional deficiency, best treated by consumption of fresh food, particularly fresh citrus or fresh meat, was not universal in the 19th and early 20th centuries, and thus sailors and explorers continued to suffer from scurvy into the 20th century. For example, the Belgian Antarctic Expedition of 1897–1899 became seriously affected by scurvy when its leader Adrien de Gerlache initially discouraged his men from eating penguin and seal meat.

In the Royal Navy’s Arctic expeditions in the 19th century it was widely believed that scurvy was prevented by good hygiene on board ship, regular exercise, and maintaining the morale of the crew, rather than by a diet of fresh food. Navy expeditions continued to be plagued by scurvy even while fresh (not jerked or tinned) meat was well known as a practical antiscorbutic among civilian whalers and explorers in the Arctic. Even cooking fresh meat did not entirely destroy its antiscorbutic properties, especially as many cooking methods failed to bring all the meat to high temperature.

The confusion is attributed to a number of factors:

while fresh citrus (particularly lemons) cured scurvy, lime juice that had been exposed to light, air and copper tubing did not – thus undermining the theory that citrus cured scurvy;

fresh meat (especially organ meat and raw meat, consumed in arctic exploration) also cured scurvy, undermining the theory that fresh vegetable matter was essential to preventing and curing scurvy;

increased marine speed via steam shipping, and improved nutrition on land, reduced the incidence of scurvy – and thus the ineffectiveness of copper-piped lime juice compared to fresh lemons was not immediately revealed.

In the resulting confusion, a new hypothesis was proposed, following the new germ theory of disease – that scurvy was caused by ptomaine, a waste product of bacteria, particularly in tainted tinned meat.

Infantile scurvy emerged in the late 19th century because children were being fed pasteurized cow’s milk, particularly in the urban upper class – the pasteurization killed bacteria but also destroyed vitamin C. This was eventually resolved by supplementing with onion juice or cooked potatoes.

20th century: At the time Robert Falcon Scott made his first expedition (1901–1904) to the Antarctic in the early 20th century, the prevailing theory was that scurvy was caused by “ptomaine poisoning”, particularly in tinned meat. However, Scott discovered that a diet of fresh meat from Antarctic seals cured scurvy before any fatalities occurred.

In 1907, an animal model which would eventually help to isolate and identify the “antiscorbutic factor” was discovered. Axel Holst and Theodor Frølich, two Norwegian physicians studying shipboard beriberi contracted aboard ship’s crews in the Norwegian Fishing Fleet, wanted a small test mammal to substitute for the pigeons then used in beriberi research. They fed guinea pigs their test diet of grains and flour, which had earlier produced beriberi in their pigeons, and were surprised when classic scurvy resulted instead. This was a serendipitous choice of animal.

Until that time, scurvy had not been observed in any organism apart from humans and had been considered an exclusively human disease. (Some birds are susceptible to scurvy, but pigeons are unaffected by scurvy, as they produce vitamin C.) Holst and Frølich found they could cure scurvy in guinea pigs with the addition of various fresh foods and extracts. This discovery of an animal experimental model for scurvy, which was made even before the essential idea of “vitamins” in foods had been put forward, has been called the single most important piece of vitamin C research.

Vilhjalmur Stefansson, an arctic explorer who had lived among the Inuit, proved that the all-meat diet they consumed did not lead to vitamin deficiencies. He participated in a study in New York’s Bellevue Hospital in February 1928, where he and a companion ate only meat for a year while under close medical observation, yet remained in good health.

In 1927, Hungarian biochemist Szent-Györgyi isolated a compound he called “hexuronic acid”. Szent-Györgyi suspected hexuronic acid, which he had isolated from adrenal glands, to be the antiscorbutic agent, but he could not prove it without an animal-deficiency model. In 1932, the connection between hexuronic acid and scurvy was finally proven by American researcher Charles Glen King of the University of Pittsburgh. King’s laboratory was given some hexuronic acid by Szent-Györgyi and soon established that it was the sought-after anti-scorbutic agent. Because of this, hexuronic acid was subsequently renamed ascorbic acid.

21st century: In the 2010s scurvy hasn’t entirely disappeared from developed countries and rates while still very low are increasing in the United Kingdom according to NHS Digital. Several cases were also reported in Westmead Hospital, Sydney, Australia.

Content for this question contributed by Cheryl LaChance, resident of East Longmeadow, Hampden County, Massachusetts, USA