Pages Menu
TwitterRssFacebook
Categories Menu

Posted by on May 26, 2017 in Tell Me Why |

What Is a Meteorite?

What Is a Meteorite?

Meteorites begin as bodies of matter traveling at great speed through space. In the solar system there are numberless such bodies, usually chunks of rock or metal. When they enter the earth’s atmosphere friction makes them hot and bright. The small chunks burn away, but the larger ones fall to the earth as meteorites. Their crater hollows are found all over the world.

A meteorite which probably weighed hundreds of tons is believed to have fallen near Winslow, Arizona, in the United States several thousand years ago. The Barringer crater, as it is known, is about one mile across and over 500 feet deep. Another large meteorite is known to have fallen at Grootfontein in South-West Africa. This weighed about 60 tons. An iron meteorite in New York City which was brought from Greenland, weighs 36 tons.

meteorite fall

A meteorite is a solid piece of debris from an object, such as a comet, asteroid, or meteoroid that originates in outer space and survives its passage through the Earth’s atmosphere and impact with the Earth’s surface or that of another planet. When the object enters the atmosphere, various factors like friction, pressure, and chemical interactions with the atmospheric gases cause it to heat up and radiate that energy. It then becomes a meteor and forms a fireball, also known as a shooting/falling star; astronomers call the brightest examples “bolides.” Meteorites that survive atmospheric entry and impact vary greatly in size. For geologists, a bolide is a meteorite large enough to create a crater.

Meteorites that are recovered after being observed as they transit the atmosphere or impact the Earth are called meteorite falls. All others are known as meteorite finds. As of April 2016, there were about 1,140 witnessed falls that have specimens in the world’s collections. There are more than 38,660 well-documented meteorite finds.

Meteorites have traditionally been divided into three broad categories: stony meteorites are rocks, mainly composed of silicate minerals; iron meteorites that are largely composed of metallic iron-nickel; and, stony-iron meteorites that contain large amounts of both metallic and rocky material. Modern classification schemes divide meteorites into groups according to their structure, chemical and isotopic composition and mineralogy. Meteorites which are smaller than 2 mm are classified as micrometeorites. Extraterrestrial meteorites are such objects that have impacted other celestial bodies, whether or not they have passed through an atmosphere. They have been found on the Moon and Mars.

Most meteoroids disintegrate when entering the Earth’s atmosphere. Usually, five to ten a year are observed to fall and are subsequently recovered and made known to scientists. Few meteorites are large enough to create large impact craters. Instead, they typically arrive at the surface at their terminal velocity and, at most, create a small pit.

Large meteoroids may strike the ground with a significant fraction of their escape velocity (second cosmic velocity), leaving behind a hypervelocity impact crater. The kind of crater will depend on the size, composition, degree of fragmentation, and incoming angle of the impactor. The force of such collisions has the potential to cause widespread destruction. The most frequent hypervelocity cratering events on the Earth are caused by iron meteoroids, which are most easily able to transit the atmosphere intact. Examples of craters caused by iron meteoroids include Barringer Meteor Crater, Odessa Meteor Crater, Wabar craters, and Wolfe Creek crater; iron meteorites are found in association with all of these craters.

In contrast, even relatively large stony or icy bodies like small comets or asteroids, up to millions of tons, are disrupted in the atmosphere, and do not make impact craters. Although such disruption events are uncommon, they can cause a considerable concussion to occur; the famed Tunguska event probably resulted from such an incident. Very large stony objects, hundreds of meters in diameter or more, weighing tens of millions of tons or more, can reach the surface and cause large craters, but are very rare. Such events are generally so energetic that the impactor is completely destroyed, leaving no meteorites. (The very first example of a stony meteorite found in association with a large impact crater, the Morokweng crater in South Africa, was reported in May 2006.)

Several phenomena are well documented during witnessed meteorite falls too small to produce hypervelocity craters. The fireball that occurs as the meteoroid passes through the atmosphere can appear to be very bright, rivaling the sun in intensity, although most are far dimmer and may not even be noticed during daytime. Various colors have been reported, including yellow, green, and red. Flashes and bursts of light can occur as the object breaks up.

Explosions, detonations, and rumblings are often heard during meteorite falls, which can be caused by sonic booms as well as shock waves resulting from major fragmentation events. These sounds can be heard over wide areas, with a radius of a hundred or more kilometers. Whistling and hissing sounds are also sometimes heard, but are poorly understood. Following passage of the fireball, it is not unusual for a dust trail to linger in the atmosphere for several minutes.

As meteoroids are heated during atmospheric entry, their surfaces melt and experience ablation. They can be sculpted into various shapes during this process, sometimes resulting in shallow thumbprint-like indentations on their surfaces called regmaglypts. If the meteoroid maintains a fixed orientation for some time, without tumbling, it may develop a conical “nose cone” or “heat shield” shape. As it decelerates, eventually the molten surface layer solidifies into a thin fusion crust, which on most meteorites is black (on some achondrites, the fusion crust may be very light colored).

On stony meteorites, the heat-affected zone is at most a few mm deep; in iron meteorites, which are more thermally conductive, the structure of the metal may be affected by heat up to 1 centimetre (0.39 in) below the surface. Reports vary; some meteorites are reported to be “burning hot to the touch” upon landing, while others are alleged to have been cold enough to condense water and form a frost. Meteorites from multiple falls, such as Bjurbole, Tagish Lake, and Buzzard Coulee, have been found having fallen on lake and sea ice, perhaps suggesting that they were not hot when they fell.

Meteoroids that experience disruption in the atmosphere may fall as meteorite showers, which can range from only a few up to thousands of separate individuals. The area over which a meteorite shower falls is known as its strewn field. Strewn fields are commonly elliptical in shape, with the major axis parallel to the direction of flight. In most cases, the largest meteorites in a shower are found farthest down-range in the strewn field.

Content for this question contributed by David Milletics, resident of DuBois, Clearfield County, Pennsylvania, USA